On subgroups of a finite p-groups

A. D. Akinola

Abstract: In this paper we proved some theorems on normal subgroups, on-normal subgroup, minimal nonmetacyclic and maximal class of a p-group G.

1. INTRODUCTION

Let G be a finite p-group. Most authors have worked on p-groups among which we will mention few. Y. Berkovich [6] have worked on subgroups and epimorphic images of finite pgroups. Y. Berkovich [4] worked on finite p groups with few minimal nonabelian subgroups. Y.Berkovich [5] worked on subgroups of finite p-groups. Y. Berkovich [1] also woraked on abelian subgroup of a p-group G. Z. Janko [2,3] worked on element of order at most 4 in finite 2-groups and On finite nonabelian 2 groups all of whose minimal nonabelian subgroups are of exponent 4.In this paper we give an answer to some of the questions post by Y.Berkovich in [1].

2. DEFINITIONS

2.1 Definition

If a group G has order p^{m} where p is a prime number and m is a positive integer, then we say that G is a p-group.

2.2. Definition

Let H be a subgroup G and let $a 2 G$, the normalizer of H in G is denoted by $N(H)$ defined by $N(H)=\left\{a \in G: \mathrm{aHa}^{-1}=\mathrm{H}\right\}$. It follows that the normalizer of a subgroup H is the whole group G if and only if H is normal in G.
2.3. Definition

If $x \in G$, the centralizer of x in G, denoted by $C G(x)$ is the set of all $a \in G$ that commute with x. i.e $C G(x)=\left\{a \in G: a x a^{-1}=x g\right.$. It is immediate that $C G(x)$ is a subgroup of G. Also $x \in C G(x)$.

2.4. Definition

A group G which contains a cyclic normal subgroup A such that G / A is also cyclic is a
metacyclic group. Dihedral groups and generalized quaternion groups are examples of metacyclic groups.

2.5. Definition

A group G is said to be minimal nonmetacyclic if G is not metacyclic but all of its proper subgroups are metacyclic.

2.6. Definition

The length of lower central series of G, that is the greatest integer c for which $\gamma_{c}(G)>\{1\}$ is called the class of G. The class of a p-group is a measure of the extent to which the group is non abelian. Abelian group are of class 1 and conversely group of class 1 are abelian.

2.7. 2.7 Definition

The group of order p^{m} and class $m-1$ for some $m \geq 3$, a p-group is said to be of maximal class where $\left(G: \gamma_{2}(G)\right)=p^{2}$; $\left.\gamma_{i-1}(G): \gamma_{i}(G)\right)=p(i=3 ; 4 ;::: ; m)$.

3. MAIN RESULT

3.1. Theorem

Suppose a p-group G, $p>2$ contains an abelian self centralizer subgroup A of order p^{3} and $|N G(A): A|=p$. Then the number of such subgroup in G is congruent to 1 (modp).

Proof:

For $H \leq G$, let $q_{3}(H)$ denote the number of self centralizer subgroup of order p^{3}
contained in H. We have that $p^{2} \equiv 1(\bmod p)$ Let μ denote the set of all maximal subgroups of G.It is known that $|\mu| \equiv 1(\bmod p)$. By hall's enumeration principle [7]
$q_{3}(G)=\sum_{H \in \mu} q_{3}(H)(\bmod p)$ Suppose that the theorem has proved fall proper subgroup of G. Take $H \in \mu$. By induction hypothesis
$q_{3}(H)=0$ or $q_{3}(G) \equiv 1(\bmod p)$. If
$q_{3}(G)=1(\bmod p) \quad$ for all $H \in \mu$. Then by
(1) $q_{3}(H) \equiv|\mu| \equiv 1(\bmod p)$.Proving
the theorem.
Therefore suppose we may assume that some maximal subgroup of G, say H has no abelian self centralizer subgroup of order p^{3}. Suppose that H contains a subgroup L of order p^{4} and exponent p. Let A be a maximal abelian self centralizer subgroup of L.Since $A<L$ and $C_{L}(A)=A$, it follows that $|A|=p^{3}$,contrary to the what was proved in the previous paragraph. Therefore H has no subgroup of order p^{4}.
Suppose $\left|N_{G}(A): A\right|=p$ this implies that A is a normal subgroup of G. Also
assume that $N_{G}(A)=G$ then A is maximal in G.

Let $q_{3}^{\prime}(H)$ be the number of normal abelian self centralizer subgroup of order p^{3}.
in G. Since $q_{3}(G)=q^{\prime}{ }_{3}(G)(\bmod p)$. it suffices to prove that $q_{3}^{\prime}(G) \equiv 1(\bmod p)$.

Therefore we may assume that G contains a normal abelian self centralizer subgroup K_{1} of order p^{3}., $K_{1} \neq K$. Set $D=K K_{1}$. By fittings lemma, the nilpotency class of D is at most two. Therefore by [1] $\exp (D)=p$. Considering $D \cap H$ and taking into account that H has no subgroups of order p^{4} and exponent p, we conclude that $|D|=p^{4}$. By lemma 3 [1] $q_{e}(D) \equiv 1(\bmod p)$. Hence the number of abelian normal self centralizer subgroup of order p^{3}. in D is congruent to 1 modulo p.
Assume that G contains a normal abelian self centralizer subgroup K_{2} of order p^{3} such that
K_{2} is not a subgroup of D with $K \cap K_{1}$ not a subgroup of K_{2}. It follows that $|K \cap K|_{1}=p^{2}=\left|K \cap K_{2}\right|$. Since
$K \cap K_{1}, K_{1} \cap K_{2}$ are different maximal subgroups of K_{2}. We conclude that
$K_{2}=\left(K \cap K_{1}\right)\left(K_{1} \cap K_{2}\right)<K K_{1}=D$
contrary to the choice of K_{2}. Therefore such K_{2} does not exist.
Therefore the number of maximal normal abelian self-centralizer subgroup of order p^{3} in G is congruent to 1 modulo p.
3.2. Theorem

Let A be a subgroup of a p-group G such
that $C_{A}(G)$. is metacyclic. If
$|A|=p$, then G has normal subgroup of order p^{p+1}.and exponent p.
Proof:
We may assume that $A<Z(G)$. By [8]
$C_{G}(A)=N_{G}(A)$. since $|A|=p$. Suppose
that D is a normal subgroup of G of exponent p. We may assume that $|D|>p^{p+1}$. and $|A D|>p^{2}$.Then $C_{A}(D)>\{1\}$.It follows that $H=A C_{D}(A)<C_{G}(A)$ that H is
metacyclic. We have $C_{A D}(H)=H$..
Therefore by [1] $A D$
is of maximal class. This is a contradiction since D is not of maximal class. Therefore $|D|=p^{p+1}$. Hence the result.
3.3 Theorem

Suppose that p-group G, $p=2$ contains an abelian normal subgroup of order p^{p+1}. Then the number of nonabelian, non normal subgroup of order p^{p+1} Is congruent to 0 (modp).
Proof:
Let $H \leq G$.. Let $q_{3}(H)$ denote the number of nonabelian normal subgroup of order p^{p+1}. contained in H. We have to prove that $\left.q_{3}(H) \equiv 0(\bmod p)\right)$. Let μ denote the set of all maximal subgroups of G. It is known that $|\mu| \equiv 1(\bmod p)$.

Take $H \in \mu$. By induction hypothesis $\left.q_{3}(H) \equiv 0(\bmod p)\right)$. By [6] H contains one abelian normal subgroup of order p^{p+1}.
Therefore $\left.q_{3}(G) \equiv 0(\bmod p)\right)$ proving the theorem.

Let $q_{3}^{\prime}(H)$ be the number of nonabelian, non normal subgroup of order p^{p+1} in G. We may assume that G contains one abelian normal subgroup of order p^{p+1}. By [1] the number of subgroup of order p^{p+1} is congruent to 1 (modp). Therefore $q^{\prime}{ }_{3}(G) \equiv 0(\bmod p)$. since by $[1] G$ contains one abelian normal subgroup of order p^{p+1}.

3.4 Theorem

Let G be a p-group and suppose N is non normal subgroup of a p-group G. If A is a maximal non normal subgroup of N then $C_{N}(A)=Z(G)$.

Proof:
Assume that $C=C_{N}(A)>Z(G)$.Then
$C=N \cap C_{G}(A)$.Let B be non normal
subgroup of N such that B / A
is a N / A non normal subgroup of exponent p in C / A.Then B is not normal in G and $B>A$ contrary to the choice of A that A is maximal non normal subgroup of N. Therefore $C_{N}(A)=Z(G)$.

Hence the result.
3.5. Theorem

Suppose that p-group G contained a subgroup M of maximal class such that
$C_{G}(M)<M$ and $|M|>p^{3}$ where $p=2$,
then G is of maximal class.
Proof:
$|M|>p^{3}, C_{G}(M)=Z(M)=p$ since M is of maximal class.
Also $C_{G}(M)=Z(M)=Z(G)=p$
Therefore by [4] G is of maximal class since $Z(G)$ $=p$ which complete the proof .
3.6. Theorem

Let $A<N<G$, where N is a non normal subgroup of G and A is a maximal subgroup of N,
$\exp (N)<p^{n}, p^{n}>2$. Let μ be the set of all
maximal non normal subgroup of N such that $\exp (A)<p^{n}$.Then $|\mu| \equiv 0(\bmod p)$.
Proof:
Assume that N is a non normal subgroup of G. Also let A be a maximal subgroup of N .Let μ be the set of all maximal non normal subgroup of N. We have to prove that $|\mu| \equiv 0(\bmod p)$. By sylow's theorem, the number of subgroup of a group is congruent to 1 (modp).
By [6] N contains one maximal normal subgroup which implies that the number of maximal non normal subgroup of N is congruent to $0($ modp $)$. i.e $|\mu| \equiv 0(\bmod p)$.
3.7. Theorem

Let $A<B \leq G$. where B is a nonabelian subgroup of a non abelian p-group
$G, \exp (B) \leq p^{m}$. and $p^{m}>2, p=2 ; m>2$.
Let μ be the set of all non abelian subgroup T of G such that $A<T$, $|T: A|=p^{2}$ and $\exp (T)=p^{m}$. Then $|\mu| \equiv 0(\bmod p)$.
Proof:
Let G be a 2 - group of order 2^{m}. Let G be member of subgroups of G of order
$2^{n} n<m$.such that T is non abelian.
Let μ be the set of all nonabelian subgroup T of G.
Let A be member of subgroup of G such that $|T: A|=p^{2}$. By sylow's theorem, the number of subgroup of a group G is congruent to 1 (modp).
If $|T: A|=p^{2}$ then $|A|=p^{n-2}$
By [6], for every value of $n ; n<m, G$ contains one abelian subgroup $T^{\prime \prime}$ of order p^{n} with $\left|T^{\prime \prime}: A\right|=p^{2}$. Therefore the number of T such that $A<T$ and $|T: A|=p^{2}$ is congruent to $0(\bmod p)$. Hence the result.

References

[1] Y. Berkovich, On Abelian subgroups of p-groups,J. of Algebra 199,262-

280 (1998).
[2] Z.Janko,Elements of order at most 4 in finite 2-group, J. Group theory 8 (2005),683-686
[3] Z. Janko,On finite nonabelian 2-groups all of whose minimal nonabelian
subgroups are of exponent 4, J. Algebra 315 (2007) 801-808
[4] Y. Berkovich, Finite p-groups with few minimal nonabelian subgroups, J.Algebra 297 (2006) 62-100.
[5] Y. Berkovich, On subgroups of finite p groups, J. Algebra 224,(2000),198-
240.
[6] Y. Berkovich, On subgroups and Epimorphic images of finite p Groups IJ. Algebra 248 (2002),472-553.
[7] P.Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. (2) 36, (1933),29-95. [8] Y.Berkovich, Groups with a cyclic subgroups of index p, frattini subgroups, pre-print.

A. D. Akinola,
Mathematics Department,
College of Natural Sciences, University of Agriculture, Abeokuta,Ogun State, Nigeria.

