On subgroups of a finite p-groups

A. D. Akinola

Abstract: In this paper we proved some theorems on normal subgroups, on-normal subgroup, minimal nonmetacyclic and maximal class of a p-group G.

1. INTRODUCTION

Let *G* be a finite p-group. Most authors have worked on p-groups among which we will mention few. Y. Berkovich [6] have worked on subgroups and epimorphic images of finite pgroups. Y. Berkovich [4] worked on finite p groups with few minimal nonabelian subgroups. Y.Berkovich [5] worked on subgroups of finite p-groups. Y. Berkovich [1] also woraked on abelian subgroup of a p-group *G*. Z. Janko [2,3] worked on element of order at most 4 in finite 2-groups and On finite nonabelian 2 groups all of whose minimal nonabelian subgroups are of exponent 4.In this paper we give an answer to some of the questions post by Y.Berkovich in [1].

2. DEFINITIONS

2.1 Definition

If a group *G* has order p^m where *p* is a prime number and *m* is a positive integer, then we say that *G* is a *p*-group.

2.2. Definition

Let *H* be a subgroup *G* and let *a* 2 *G*, the normalizer of *H* in *G* is denoted by N(H) defined by $N(H) = \{a \in G : aHa^{-1} = H\}$. It follows that the normalizer of a subgroup *H* is the whole group *G* if and only if *H* is normal in *G*. 2.3. Definition

If $x \in G$, the centralizer of x in G, denoted by CG(x) is the set of all $a \in G$ that commute with

x. i.e $CG(x) = \{a \in G : axa^{-1} = xg \text{.It is immediate that } CG(x) \text{ is a subgroup of } G. Also <math>x \in CG(x)$.

2.4. Definition

A group *G* which contains a cyclic normal subgroup *A* such that *G*/*A* is also cyclic is a

metacyclic group. Dihedral groups and generalized quaternion groups are examples of metacyclic groups.

2.5. Definition

A group *G* is said to be minimal nonmetacyclic if *G* is not metacyclic but all of its proper subgroups are metacyclic.

2.6. Definition

The length of lower central series of *G*, that is the greatest integer *c* for which γ_c (*G*) > {1} is called the class of *G*. The class of a *p*-group is a measure of the extent to which the group is non abelian. Abelian group are of class 1 and

conversely group of class 1 are abelian.

2.7. 2.7 Definition

The group of order p^m and class *m*-1 for some $m \ge 3$, a *p*-group is said to be of maximal class where $(G : \gamma_2(G)) = p^2$; $\gamma_{i-1}(G) : \gamma_1(G)) = p (i = 3; 4; ...;m).$

3. MAIN RESULT

3.1. Theorem

Suppose a p-group G, p > 2 contains an abelian self centralizer subgroup A of order p^3 and |NG(A) : A| = p. Then the number of such subgroup in G is congruent to 1(modp).

Proof:

For $H \leq G$, let $q_3(H)$ denote the number of self centralizer subgroup of order p^3 contained in *H*. We have that $p^2 \equiv 1 \pmod{p}$ Let μ denote the set of all maximal subgroups of *G*. It is known that $|\mu| \equiv 1 \pmod{p}$. By hall's enumeration principle [7]

 $q_3(G) = \sum_{H \in \mu} q_3(H) \pmod{p}$ Suppose that the

theorem has proved fall proper subgroup of G. Take $H \in \mu$. By induction hypothesis

 $\begin{array}{l} q_3(H)=0 \mbox{ or } q_3(G)\equiv 1(\bmod p) \quad . \mbox{ If } \\ q_3(G)=1(\bmod p) \quad \mbox{ for all } H\in\mu\,. \mbox{ Then by } \\ (1) \ q_3(H)\equiv \mid\mu\mid\equiv 1(\bmod p)\,. \mbox{Proving} \end{array}$

the theorem.

Therefore suppose we may assume that some maximal subgroup of G, say H has no abelian self centralizer subgroup of order p^3 . Suppose

that *H* contains a subgroup *L* of order p^4 and exponent *p*.Let *A* be a maximal abelian self centralizer subgroup of *L*.Since *A* < *L* and

 $C_L(A) = A$, it follows that $|A| = p^3$, contrary to the what was proved in the previous paragraph. Therefore *H* has no subgroup of order

 p^4 .

Suppose $|N_G(A): A| = p$ this implies that A is a normal subgroup of G. Also

assume that $N_G(A) = G$ then A is maximal in G.

Let $q'_3(H)$ be the number of normal abelian self centralizer subgroup of order p^3 .

in G. Since $q_3(G) = q'_3(G) \pmod{p}$. it suffices to prove that $q'_3(G) \equiv 1 \pmod{p}$.

Therefore we may assume that *G* contains a normal abelian self centralizer subgroup K_1 of order p^3 ., $K_1 \neq K$. Set $D = KK_1$. By fittings lemma, the nilpotency class of *D* is at most two. Therefore by [1] exp(D) = p. Considering

 $D \cap H$ and taking into account that H has no

subgroups of order p^4 and exponent p, we

conclude that $\mid D \mid = p^4$. By lemma 3 [1]

 $q_e(D) \equiv 1 \pmod{p}$. Hence the number of

abelian normal self centralizer subgroup of order p^3 . in *D* is congruent to 1 modulo *p*.

Assume that G contains a normal abelian self centralizer subgroup K_2 of order p^3 such that

 K_2 is not a subgroup of D with $K \cap K_1$ not a subgroup of K_2 . It follows that $|K \cap K|_1 = p^2 = |K \cap K_2|$. Since $K \cap K_1, K_1 \cap K_2$ are different

maximal subgroups of $\,K_2^{}$. We conclude that

 $K_2 = (K \cap K_1)(K_1 \cap K_2) < KK_1 = D$ contrary to the choice of K_2 . Therefore such K_2 does not exist. Therefore the number of maximal normal abelian self-centralizer subgroup of order p^3 in *G* is congruent to 1 modulo *p*.

3.2. Theorem Let A be a subgroup of a p-group G such that $C_A(G)$ is metacyclic. If |A| = p, then G has normal subgroup of order p^{p+1} and exponent p. Proof: We may assume that A < Z(G). By [8] $C_G(A) = N_G(A)$. since |A|=p. Suppose that D is a normal subgroup of G of exponent p. We may assume that $\mid D \mid > p^{p+1}$. and $\mid AD \mid > p^2$. Then $C_{A}(D) > \{1\}$. It follows that $H = AC_{D}(A) < C_{G}(A)$ that H is metacyclic. We have $C_{AD}(H) = H$... Therefore by [1] AD is of maximal class. This is a contradiction

since *D* is not of maximal class. Therefore $|D| = p^{p+1}$. Hence the result.

3.3 Theorem

Suppose that *p*-group *G*, *p* = 2 contains an abelian normal subgroup of order p^{p+1} . Then the number of nonabelian, non normal subgroup of order p^{p+1} Is congruent to 0(*modp*). *Proof:*

Let $H \leq G$... Let $q_3(H)$ denote the number of nonabelian normal subgroup of order p^{p+1} . contained in *H*. We have to prove that $q_3(H) \equiv 0 \pmod{p}$. Let μ denote the set of all maximal subgroups of *G*. It is known that $|\mu| \equiv 1 \pmod{p}$. Take $H \in \mu$. By induction hypothesis $q_3(H) \equiv 0 \pmod{p}$. By [6] *H* contains one abelian normal subgroup of order p^{p+1} . Therefore $q_3(G) \equiv 0 \pmod{p}$ proving the theorem.

Let $q'_{3}(H)$ be the number of nonabelian, non normal subgroup of order p^{p+1} in *G*. We may assume that *G* contains one abelian normal subgroup of order p^{p+1} . By [1] the number of subgroup of order p^{p+1} is congruent to 1(*modp*). Therefore $q'_{3}(G) \equiv 0 \pmod{p}$. since by [1] *G* contains one abelian normal subgroup of order p^{p+1} .

3.4. Theorem

Let *G* be a *p*-group and suppose *N* is non normal subgroup of a *p*-group *G*. If *A* is a maximal non normal subgroup of *N* then $C_N(A) = Z(G)$.

Proof:

Assume that $C = C_N(A) > Z(G)$. Then

 $C = N \cap C_{\alpha}(A)$. Let *B* be non normal

subgroup of *N* such that *B*/A is a N/A non normal subgroup of exponent *p* in *C*/A.Then *B* is not normal in *G* and *B* > A contrary to the choice of *A* that *A* is maximal non normal subgroup of *N*. Therefore $C_N(A) = Z(G)$. Hence the result.

3.5. Theorem

Suppose that p-group G contained a subgroup M of maximal class such that

 $C_G(M) < M$ and $|M| > p^3$ where p = 2, then G is of maximal class.

Proof:

 $|M| > p^3$, $C_G(M) = Z(M) = p$ since *M* is of maximal class.

Also $C_G(M) = Z(M) = Z(G) = p$

Therefore by [4] *G* is of maximal class since Z(G) = p which complete the proof .

3.6. Theorem

Let A < N < G, where N is a non normal subgroup of G and A is a maximal subgroup of N,

 $\exp(N) < p^n, p^n > 2$. Let μ be the set of all

maximal non normal subgroup of *N* such that $exp(A) < p^n$. Then $\mid \mu \mid \equiv 0 \pmod{p}$. *Proof:*

Assume that *N* is a non normal subgroup of *G*. Also let *A* be a maximal subgroup of *N* .Let μ be the set of all maximal non normal subgroup of *N*. We have to prove that $|\mu| \equiv 0 \pmod{p}$. By sylow's theorem, the number of subgroup of a group is congruent to 1(*modp*).

By [6] *N* contains one maximal normal subgroup which implies that the number of maximal non normal subgroup of *N* is congruent to 0(modp). i.e $| \mu | \equiv 0(mod p)$.

3.7. Theorem

Let $A < B \le G$. where *B* is a nonabelian subgroup of a non abelian *p*-group

 $G, exp(B) \le p^m$ and $p^m > 2$, p = 2; m > 2. Let μ be the set of all non abelian subgroup T of G such that A < T,

 $|T:A| = p^2$ and $\exp(T) = p^m$. Then $|\mu| \equiv 0 \pmod{p}$. Proof:

n.

Let G be a 2- group of order 2^m .Let G be member of subgroups of G of order

 $2^n n < m$ such that *T* is non abelian. Let μ be the set of all nonabelian subgroup *T* of *G*.

Let *A* be member of subgroup of *G* such that $|T:A| = p^2$. By sylow's theorem, the number of subgroup of a group *G* is congruent to 1(*modp*).

If $|T:A| = p^2$ then $|A| = p^{n-2}$

By [6], for every value of n; n < m, G contains one abelian subgroup T'' of order p^n

with $|T'': A| = p^2$. Therefore the number of *T* such that A < T and $|T: A| = p^2$ is congruent to 0(modp). Hence the result.

References

[1] Y. Berkovich, On Abelian subgroups of *p*-groups, J. of Algebra 199,262-

280 (1998).
[2] Z.Janko,Elements of order at most 4 in finite
2-group, J. Group theory
8 (2005),683-686
[3] Z. Janko,On finite nonabelian 2-groups all of whose minimal nonabelian
subgroups are of exponent 4, J. Algebra 315
(2007) 801-808
[4] Y. Berkovich, Finite *p*-groups with few minimal nonabelian subgroups,

J.Algebra 297 (2006) 62-100.

[5] Y. Berkovich, On subgroups of finite *p*groups, J. Algebra 224,(2000),198-240.

[6] Y. Berkovich, On subgroups and Epimorphic images of finite *p*-Groups ,J. Algebra 248 (2002),472-553.
[7] P.Hall, A contribution to the theory of groups of prime power order, Proc. London Math. Soc. (2) 36, (1933),29-95.
[8] Y.Berkovich, Groups with a cyclic subgroups of index *p*,frattini subgroups, pre-print.

A. D. Akinola, Mathematics Department, College of Natural Sciences, University of Agriculture, Abeokuta,Ogun State, Nigeria.